If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+32t+10
We move all terms to the left:
0-(-16t^2+32t+10)=0
We add all the numbers together, and all the variables
-(-16t^2+32t+10)=0
We get rid of parentheses
16t^2-32t-10=0
a = 16; b = -32; c = -10;
Δ = b2-4ac
Δ = -322-4·16·(-10)
Δ = 1664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1664}=\sqrt{64*26}=\sqrt{64}*\sqrt{26}=8\sqrt{26}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{26}}{2*16}=\frac{32-8\sqrt{26}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{26}}{2*16}=\frac{32+8\sqrt{26}}{32} $
| 4=90-x | | 9v+4v=3 | | 12x–4=14x–10 | | 2(5x+2=10x+5 | | y–15=4y–3 | | 3x+7-7=-5=7 | | 5+14y=9y–5 | | -15+4n=-4n-7n | | -5-4y=-53 | | 260=20v | | (3x+8)+(7x-2)=106 | | 12=-14n | | 2(y-24)+4(y-4)=50 | | 5r+2=17 | | -2x+7=-5x-5 | | 12x-(8x-3)=7 | | b2=0 | | y/5=17/8 | | -1/3(6x-21)=-5 | | (4/5)2=x | | b-4/6=b2/2 | | 5x+6x–8x+2x=x+15 | | s=25+.25s | | 3k+9-2k=11 | | 47+(3x+22)+(6x+3)=180 | | 4-3x=2x-26 | | 4x-5x+11=2x-3 | | 1.6x+-3=1 | | 80+4+16x=180 | | 80=4+16x | | 20-40=-3x | | 20=-3x+40 |